

Pelagic Real-Time Platform
Capabilities
Understand Real-Time Systems. In Real-Time.

July 27, 2017 i

www.FishEyeSoftware.com/Pelagic

https://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 1

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 2

Contents

OVERVIEW 3

PELAGIC REAL-TIME PLATFORM CAPABILITIES 5

CONCEPT OF OPERATION 7

NOTIONAL ARCHITECTURE 11

FUNCTIONAL CAPABILITIES 13

EXAMPLE APPLICATION 23

EXAMPLE CODE 25

QUESTIONS AND ANSWERS 31

SUMMARY 32

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 3

Overview

Modern real-time systems have evolved to a complex cacophony of widely distributed, largely

isolated systems. While these modern systems expand capabilities, they add a burden to

interoperate, maintain, and analyze as a whole, counter to the need to reduce costs and

personnel. Two aspects that are required to monitor and control such systems are: (1) access to

data from disparate applications within these systems and (2) performance monitoring of the

system resources themselves, including both operating system resource usages and collective

software application performances. The availability of this data in real-time enables system

data consumers to receive information relevant to their Community of Interest (COI) and

system managers to understand the overall system state, manage various resources, and

dynamically adapt applications and resources to changing loads and resource availabilities. The

Pelagic Real-Time Platform™ii enables system developers, integrators, testers, operators, and

maintainers to understand real-time systems throughout their life cycle. It allows these system

stakeholders to understand what is happening as systems operate and in real-time.

FishEye Software’s unique technology provides tools for monitoring and controlling systems

that are widely distributed, complex, and operate in real-time. These tools offer the following

features, functions, framework products, and services:

• Data collection schema definition and data distribution services enable users to identify which data in

applications is to be captured, compose the data using domain-specific languages (DSLs), and then

distribute the data in a self-describing form through an open standard publish-subscribe infrastructure.

• Open, standard data archive file formats: log the collected data in user-selectable formats, with built-

in support for Hierarchical Data Format, version 5 (HDF5), an industry standard for data exchange in

high-performance, real-time analysis applications.

• Automated generation of data collection schema: automatically search within application code

products to catalog application data of interest.

• Data replay services: playback any selected archives for post-run analysis or for simulation purposes.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 4

• Pre-publication data processing: enable end-users to specify logic to distill raw data collected by

applications into reduced information prior to publication, using any of the following:

• Data Filters: enable end-users to define selection criteria that reduce the volume of data

that is published.

• Complex Event Processing (CEP) enables end-users to evaluate and take action on real-

time events.

• Downloaded client algorithms: enable end-users to define algorithms in standard analysis

tools (e.g., MATLAB, Python, Excel), specify bindings of data collection schema to their

arguments and output values, download those specifications to a sourcing application, and

have the associated processing be performed by the publisher prior to publishing the

output values.

The benefits obtained by using these capabilities are:

• A Simple Way to Understand Complex Systems

• Manage and Control Large Real-Time Data Volume and Velocity

• Expose Internal Data, making it Open and Easily Accessible

• Reduce System Life-cycle Costs

• Move Post-Processing Analysis to Real-Time Analysis

• Real-time data distribution for remote system monitoring and support

• Highly scalable architectures through an open standard publish-subscribe infrastructure

• Run-time discovery of new data types (vice compile-time data type inclusion)

• Lower data throughput demand via higher-level events and server-side algorithms

• Improved understanding of system operation via user-defined domain-specific languages

• Reduced the cost of operation and maintenance personnel through automated decisions

http://www.fisheyesoftware.com/Pelagic

 Pelagic Real-Time Platform Capabilities

July 27, 2017Pelagic Real-Time Platform Capabilities

Pelagic Real-Time Platform Capabilities

The following sections outline the capabilities of Pelagic products. Pelagic is designed as a

flexible real-time microservice architecture consisting of directly deployable architectural

mechanisms, a framework for constructing application-specific solutions, and a set of services

for making those solutions available in a distributed computing environment.

1.1. Motivation

FishEye has long recognized the need for a set of tools for handling large datasets, specifically in

the area of fusing sensor data from various sensors. This recognition stemmed from our

contributions to several complex radar sensor development programs. While the tasks

performed by these systems varied widely, they shared common aspects, including being hard

real-time and requiring the ability to extract internal data for subsequent analysis.

Motivated by this need and the strong conviction that a flexible, standards-based, high-

performance solution would make an enormous impact on the performance of complex real-

time systems and the full life cycle productivity of the ecosystem, FishEye performed market

research, developed a business plan, and launched demonstration development of the Pelagiciii

in early 2008. This technical design and development work continues in parallel with the

business development effort.

1.2. Background

Modern distributed systems comprise many integrated and discrete complex software systems

that run mission-critical, real-time processes. Some legacy systems are being upgraded with

modern technology in order to extend their life (and investment payback) for several decades.

Other legacy systems are considered “untouchable”; yet, it is desirable to somehow make them

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 6

interoperable with the newer, fully integrated systems. New systems have the opportunity to

embrace the newer technologies, yet should be architected to be open, evolvable, and scalable.

While these integrated distributed systems typically perform widely disparate tasks, they all

share a common underlying need: namely, the ability to monitor and distribute information

about the system's internal operation in real or near real-time without perturbing the

performance of the system’s primary task. This need to monitor and distribute information is

motivated by the following:

o System development – During system development, engineers require the ability to

observe the internal operation of the various modules that comprise the system, ensuring

they are performing according to system requirements. Designers and developers also

need to understand and account for system usage and overhead constraints.

o System test – During Formal Qualification Testing (FQT), it is difficult to ensure correct

operation of the entire system strictly through the observance of the external behavior of

the system. Typically, FQT test plans include the requirement to observe the correct

internal operation.

o System optimization – Deployed systems may require automated, semi-automated, or

manual optimization of various operating parameters based on environmental conditions

or mission tasking. The ability to record internal data for subsequent offline analysis is

often required to perform effective system optimization.

o System operation – With the trend toward developing modern, scalable, and real-time

systems using standard off-the-shelf hardware and operating systems, the ability to move

processes among platforms to account for load variation and possible subsystem failures

necessitates the real-time collection and provisioning of a variety of system metrics and

events.

o Post-mission analysis – It is crucial to accurately record and analyze both simulated and

real mission data to provide feedback to both the engineering and operational teams.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 7

Historically, the need for non-intrusive data capture and distribution was addressed on a

program-by-program basis. Program budget and resources are dedicated to developing a

custom solution for the individual program. As a result, the technology for accomplishing real-

time data capture and distribution is reinvented for each program, creating a legacy of systems,

each with its own data capture approach and generating its own proprietary, non-transferable

data products. Clearly, having data capture technology tied to a specific program results in

solutions that run the risk of becoming brittle, non-scalable, non-maintainable, or obsolete.

Proprietary, non-standard data formats also increase the cost of data analysis tools and hinder

the ability to add future capabilities that utilize that data.

It is estimated that upwards of $10B is spent annually on real-time system development.

Presently, there is a lack of commercial products to address the data capture and distribution

problem that each of these systems faces. The product set described herein intends to fill these

gaps. The development effort started in the fall of 2008. Some of these capabilities have been

implemented as part of internal development efforts, while others have been developed as part

of a Small Business Innovation Research (SBIR) project. Additionally, some capabilities have

been proposed as part of two separate SBIR efforts, and others are included in FishEye’s

product roadmap1.

Concept of Operation

1.3. Actor Diagram

Figure 1 shows a UML actor diagram that establishes the system boundaries for the Pelagic

products and the roles played by the various external entities that interact with the Pelagic

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 8

products. The primary points of interest in this actor diagram are that the Instrumented

Resources are only minimally impacted by the Pelagic instrumentation and that Pelagic serves

as the bridging technology to extract data from those resources and deliver it in forms suitable

for a range of processing targets, both in real-time and as logged data.

RTTK

Listener
Analysis

Tools
(e.g., MATLAB)

Instrumented Resource
(e.g., SW Application,

OS Resource ,
ESB Resource)

Admin AppConfigurer AppController

Analyst
Figure 1. Actor Diagram for Pelagic

The responsibilities of the actors are summarized in Table 1. The primary point of this table is

that the sole responsibility of the “Instrumented Resources” is to log their data, and that Pelagic

handles how the data is to be pre-publication-processed and distributed to subscribers.

Table 1 – Actors and Responsibilities

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 9

Actors Responsibilities

Administrator Identifies authorized users to Pelagic. Configures Pelagic for usage by

Application Configurers and Application Controllers.

Application

Configurer

Configures Pelagic for one or more monitored resources.

Application

Controller

Configures the Applications for usage with Pelagic and controls the running

of those applications.

Instrumented

Resource

Logs Data to Pelagic.

Listener

Application

Subscribes to and receives real-time application data.

Analysis Tools Receives Pelagic data artifacts.

Analyst Configure and observe near real-time and post run data outputs.

1.4. Operational View

While not in scope for this white paper, the use cases that were established for this set of

actors are suppressed. Instead the following representative operational steps for the “happy

path” usage pattern should suffice for conveying a fundamental concept of operation:

1. An Administrator sets up accounts for qualified users of Pelagic products and services.

2. An ApplicationConfigurer (in a system engineering role) uses Pelagic to analyze an

application to identify the application class definitions from which he intends to collect

data and defines (automatically or manually) a catalog of data schema definitions (a

MetaLog) into which the data values will be copied. These data collection schemas will

be referred to as “Fundamental Data Artifacts” (FDAs) and will be used as the basic

building blocks for all the functionality of Pelagic. Because these FDAs constitute meta-

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 10

information about the application classes, the catalog in which they are maintained will

be referred to as a “MetaLog”.

3. An ApplicationConfigurer (in a developer role) instruments the application with data

collection calls for FDAs that have been defined in the MetaLog. For legacy applications

that already perform data collection, these Pelagic-directed calls can be included either

as additional substeps within the existing data collection function or as replacements to

the existing data collection functions.

4. An ApplicationConfigurer (in an integrator role) defines a “project”, wherein a “project”

identifies which FDAs will be collected from which application runs and which pre-

publication data processing is to be applied.

5. Prior to starting a run or during a run, one or more Analysts start their listeners and

configure them for receiving the data streams of interest by subscribing to the

associated FDAs and submitting-or-enabling any pre-publication client-supplied data

processing algorithms.

6. An ApplicatonController sets up the project in preparation for making a run, by staging

the FDA configuration settings and starting the execution of the participating application

programs.

7. During the run, the runtime Analysts view the application and/or OS-level resource

monitoring agents.

8. At any time after the run, an Analyst can request a playback of a previously-logged

session, reconfigure the listeners with differing FDAs, filters, or pre-publication data

processors and observe the new set of outputs. For example, an Analyst may choose to

revise a MATLAB script to see if it produces more useful analysis. Or, an Analyst may

choose to define different Complex Events to try to improve the situational awareness

of the observation perspectives.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 11

Notional Architecture

Based upon the use cases noted in the previous section, an object-oriented analysis was

performed, the design forces were introduced, and an object-oriented design was developed to

carry those forces for the given requirements. That design has been maintained as the basis of

the software implementation. A notional architecture of the resulting current design is shown

in Figure 2.

Open Analysis & Integration

Pre-Pub
Config

Archiver

Real-
Time

Process

DA
TA

Metalog

Data Capture & Distribution

Code

Tools & Systems
Database / SQL

MATLAB
Custom

Other Systems
Reconstitution

SQL

MATLAB

ASCII

DDS

HDF5

Metalog Generation

Listeners

Logger Log

Legend
Application Data RTTK Interface

FDA IDE

System Control

Pre-Pub IDE
Pre-Pub

Processor

Streamer

Ontology EditingMetalog GenerationMetalog EditingOntology ImportClient-Defined AlgorithmsSystem StartupSystem OperationPost-Run AnalysisPlaybackRTTK Notional Architecture

Figure 2. Pelagic Notional Architecture

Pelagic manages FDA data representations in a MetaLog, which serves as a common repository

for data schemas, facilitating archiving and streaming of datasets. The MetaLog can be

populated manually or by a MetaLog generation tool. The MetaLog generation tool analyzes

application source code products for candidate data collection types and then automatically

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 12

populates the MetaLog. Instrumentation of application processes is done by adding simple log

function calls with arguments that reference data-bearing objects in the running application

program. As data is collected, it can be both logged to disk by the Archiver and streamed to

Listeners. Pelagic utilizes Hierarchical Data Format, version 5 (HDF5), as its logging format due

to its wide industry acceptance, hierarchical characterization capability, low storage footprint

(in binary), high read/write speeds, and platform independence.

It is recognized that some clients may not find an existing set of FDAs in the MetaLog that

meets their needs. For example, warfighters at the “tactical edge” typically have very small

bandwidth communications devices that cannot handle large data throughputs. Even with

adequate communication devices, subscribers may want to perform some automated data

processing on available data on the server side before publishing information derived from

collected datasets. A solution for both situations is to provide a capability to pre-process the

datasets with logic that distills the data into a smaller set of more directed information. In some

cases, the nature of this data pre-processing may align with the CEP transformation capability.

To support these cases, Pelagic will offer a server-side CEP engine as a service. In cases where

the CEP treatment is not well-suited, Pelagic is planning to provide a service for client-defined

algorithm support, where clients define their algorithms in industry-standard analysis tools

(such as MATLAB), use an “Algorithm IDE” to browse the MetaLog for the FDAs that will serve

as the arguments to the scripted program, find or define FDAs that will carry the outputs of the

scripted program back as published FDAs, and download the scripted algorithm with FDA

bindings to the publishing server. As data is streamed from applications, the selected FDAs will

be passed through the algorithm, and the generated FDAs will be published as well.

Further details of the functional capabilities of the Pelagic tools, frameworks, and services are

provided below.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 13

Functional Capabilities

This section provides brief descriptions of Pelagic's functional capabilities. The sections are

ordered from basic definitions of data types to increasingly more sophisticated tools,

frameworks, and services.

1.5. Data Schema Definition

The basic unit of manipulation in Pelagic is called a Fundamental Data Artifact (FDA)2. An FDA is

a data record consisting of a unique identifier3, execution context data, and a data payload. The

execution context is information about the process from which the data has been collected, for

example, time, process id, and thread id. Pelagic provides a default definition for the execution

context data, but users can choose to replace the default execution context data with their own

definitions including the ability to have the Pelagic logger call back to a user-defined function to

populate the execution context portion of the header. The data payload portion of the FDA is

defined by a Data Schema, which is a sequence of Data Members of user-specified types,

including any combination of primitives (for example, int, float, char) and aggregates (for

example, array of primitives, sequence of data members, aggregates of aggregates). The logical

specification of what constitutes an FDA definition is considered “data about the data”, often

coined by the word “metadata”. This metadata is maintained in a version-controlled database,

called a MetaLog. The left of Figure 3 shows a conceptual illustration of what an FDA definition

looks like in a MetaLog. During application execution, log calls in the program extract data

2 An FDA corresponds with entities in other programs such as Data Collection Records (DCRs), Logical

Record Ids (LRIDs), Diagnostic Trouble Codes (DTCs), etc.

3 The unique identifier of an FDA contains (at a minimum) a unique integer and a version identifier.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 14

values from the application and send them to a Logger. The Logger combines the FDA

identification data, execution context data, and payload data to form a data collection record,

as illustrated in the right part of Figure 3. This figure illustrates only the case where Data

Members are of fixed size, however, the actual Pelagic toolset can handle variant records (as in

Ada).

DataMember
typeIdentifier

size

FdaId

DataSchema
<context>

DataMember
typeIdentifier

size

DataMember
typeIdentifier

size

<fdaId>

<data member0>

<data member1>

<data member2>

∑sizei

D
at

a
Pa

yl
oa

d

size0

size1

size2
H

ea
de

r

As a Specification in the Metalog As a Data Collection Record

Figure 3. Conceptual Model of a Fundamental Data Artifact (FDA)

1.6. MetaLog Creation

A MetaLog can be populated programmatically through an Application Programmer Interface

(FDA API), interactively through an FDA Interactive Development Environment (FDA IDE), or

automatically though the MetaLog Generation Tool (MetGen). In all cases, the definitions of the

application classes from which data are to be collected must be available for setting up the Data

Member definitions of the Fda Data Schema. For the FDA IDE and the FDA API, it is sufficient to

have just the logical specifications of the application data types; however, actual source code

facilitates the creation of the Data Schema. For the MetGen tool, access to the source code is

required. The initial version of MetGen can analyze Ada code. MetGen for C++ code is in

progress.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 15

The logical process for defining an FDA is the same for all three techniques and is illustrated in

Figure 4. First, the information needed for system monitoring and control is congealed into a

set of logical data collection record definitions. Each logical data collection record definition is

expressed as a DataSchema in Pelagic. A type, “Ti”, is defined for the DataSchema and is

registered in the MetaLog registry. Details of this process are suppressed from this white paper:

suffice it to say that the information in “Ti” is used to move dataFields between storage spaces,

for example, from an octet sequence into HDF5 files. Each DataSchema is assigned to a unique

FDA in the MetaLog. For each FDA, the definitions of the application data types (e.g., classes

and structs), the data is extracted from their code-based products. Next, for each data member

in the Application Data Type that is to be collected, a semantically equivalent Data Member is

added to the Data Schema of the FDA. In the simplest case, an entire instance of the application

data type is mapped into a Data Member of equivalent type in the FDA. In the general case, a

sequence of selected sub-fields of the application data type is mapped to a sequence of

equivalent type fields in the FDA4.

4 This case has been coined “cherry picking” and is not yet implemented in Pelagic.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 16

DataSchema

FdaId

FDA Data Schema Application Data Types

AppDataTypem

dataField0

dataField1

dataField0

AppDataTypen

AppDataTypek

dataField0

dataField1

dataField2

DataMember0

Tm
sizeof(AppDataTypem)

DataMember0

Tn

sizeof(AppDataTypen)

DataMember0

Tk

sizeof(AppDataTypek)

Ti

T_Registry
{ T0, T1, ...Tn }

Figure 4. Mapping Application Data Types to FDA DataSchema

1.7. Data Collection

Data collection with Pelagic can be done from applications as well as from the OS-level

resources in which the applications are executing.

1.7.1. Application Data Collection

In order to collect data from an application, its source code must be instrumented with logging

calls, referred to herein as “dataRecord” calls. These calls can be placed anywhere in the code

where the values from application objects are available. However, if one is instrumenting an

application that already has logging calls of its own, the Pelagic “dataRecord” call can be

inserted within the existing logging method definition alongside the existing data extraction

code or instead of it. This allows application developers to use Pelagic “dataRecord” to

“shadow” an existing data collection mechanism either to verify its performance until a

“cutover” decision is made to switch to using Pelagic or to “tee” the data to BOTH record to the

existing mechanism AND to augment the system with additional features available in Pelagic

that do not exist in the legacy system.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 17

The interface to “dataRecord” is generic and introduces no compilation or link dependencies on

the application code base5: “dataRecord(int fdaId, void * src0, int size0, …, void * srcN, int

sizeN)”. Figure 5 illustrates the process of data collection. When the “dataRecord” function is

called, the memory addresses of the values of the application data types are passed in as

arguments, “srcX”. For each application value, the memory size of the value is also passed in,

“sizeX”. The “dataRecord” function calculates the amount of memory required to record the

Header-plus-Payload, based on the data collection configuration settings and the sum of the

sizes passed as arguments. Then it obtains the required storage area as a “chunk” from the

collection buffer memory, fills in the header part with the FDA value, and the execution context

information. Then “dataRecord” traverses the list of “srcX/sizeX” pairs, copying bytes from

application memory to the collection buffer. This “chunk” is now available for further

processing, such as pre-publication processing, streaming and archiving.

5 Some data recording systems use a strongly-typed collection function that exposes application data types

to the “dataRecord” call. In such systems, when a new application data type is added to the set of data

collection records, the application must be rebuilt, in some cases causing extensive recompilation.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 18

FDA Data Collection Application Data Values

a : AppDataTypem

dataField0

dataField1

dataField0

b : AppDataTypen

c : AppDataTypek

dataField0

dataField1

dataField2

<context>

<fdaId>
∑sizei

<data member0>size0

<data member1>size1

<data member2>
size2

capture(FDA, &a, size0, &b, size1, &c, size2);

&a

&b

&c

Figure 5. Collecting Values from Application Data Types

Prior to running an instrumented application, the collection strategy for that run must be

established. This can be done using a project run configuration tool to create a configuration

file (XML) or directly creating/modifying the configuration in a standard editor or using a

combination of the two approaches. This file can contain a run identifier, the collection

priorities of FDAs that are to be collected for that run, any filters to be applied prior to

collection, and the dispensation choices for collected data. The run identifier can be used to

coordinate the FDAs in this program execution with other processes, for example, remote

subscribers. The priorities range from OFF to ESSENTIAL and are used during the run for

shedding the collection load when the collection buffer resources become successively

degraded. The filters cause the collection of an FDA to depend upon contextual information,

such as value thresholds and time windows. The dispensation choices indicate what to do once

an FDA has been collected, causing the FDA to do any of the following: buffer it in the

application, publish it as a stream. When the dispensation choice is to buffer it in the

application, FDAs are collected in application memory until the volume of collected data

reaches a flushing threshold, at which time a local Archiver is signaled of the buffer’s availability

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 19

and the Archiver writes the buffer contents into a HDF5 log file. When the dispensation choice

is to publish the FDA as a stream, the Logger immediately publishes the FDA using DDS so that

subscribers can receive FDA data as it is collected.

The final requirement to incorporate Pelagic data collection into an application is to link the

Pelagic Logger library into the executable, as indicated by the “Logger” modules in the notional

architecture in Figure 2. The Logger module, at program startup, will read the data collection

configuration file. Based on the settings in the configuration file, the Logger initializes the FDA

runtime settings. If there is a dispensation choice to publish FDAs, the Logger may set up the

DDS publishing facility and publish the FDA/DataSchema as DDS Topics. If there is a

dispensation choice to buffer FDAs, the Logger initializes the memory buffering mechanism and

creates a local Archiver with its own threads to perform the writing of HDF5 log files.

It should be noted here, that a user can choose to use a remote Archiver instead of a local

Archiver by setting the buffering dispensation choice off and the publishing dispensation choice

on and then subscribe to the FDA as a Content-Filtered Topic, filtered by the run identifier that

was used to configure the Logger. Pelagic provides such a standalone Archiver though its SOA

to act as a standalone subscriber.

1.7.2. Data Streaming

When a Logger has been configured to perform streaming of its FDAs, at startup it initializes the

entities in the DDS publish-subscribe network programming framework (domain participant,

publisher, data writer, and topics) based on the configuration settings. One of the settings in

that file identifies the DDS QoS file to use in the given run. Whenever a “dataRecord” request is

made from the application (or RM Agent), if the given FDA is configured to be published, it is

published through the DDS network fabric.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 20

1.7.3. Data Archiving

Data archiving is defined herein to mean the writing of data to a log file. In Pelagic archiving is

performed by an Archiver object. An Archiver object can write the data in either native binary

format or in HDF5 format. HDF5 has been selected for Pelagic due to its wide industry

acceptance, its hierarchical characterization capability, its low storage footprint (in binary), its

high read/write speeds, and its platform independence. Some users may choose the binary

format to be backward-compatible with other data collection schemes, however new programs

will likely opt for writing the data in HDF5 format.

Archiver objects can be collocated with the Logger in the application program (local) or they

can be created in a separate process or computer (remote).

When the Archiver is local, the Pelagic startup code creates an Archiver object, provides it with

a specified number of threads, and connects it to the Logger. As the Logger fills its buffers with

data collected from its application, it signals the Archiver that a data collection buffer is ready

to be written to disk.

For remote Archiving, there are two options. One option is to use the ready-built standalone

Pelagic Archiver product that extends the FDA Listener to automatically create the stream-in

interface of the FDA Listener to get FDA data from the application. As data is streamed-in, it is

written to the specified log file in binary or HDF5 format.

1.7.4. Playback Services

Once a system has run for a period of time and has logged its FDA data, Pelagic provides

services for playing back any selected sets of FDAs from the log files for any selected duration of

time. As illustrated in Figure 2, this data is formatted into its native streaming format and

passed to a Streamer. Since the Streamer is agnostic to its buffering sources, it streams the data

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 21

just as if it were originating in running applications, pushing it through its normal publishing

channels.

1.7.5. Pre-Publication Data Processing

It is widely recognized that modern systems can emit orders of magnitude of raw data than is

strictly needed by all subscribers. Not only does this place additional processing and throughput

burdens on the system, but also does is result in information overload on its human consumers.

A repeated request from users has been to be able to perform various sorts of preprocessing on

data and to offer alternate, distilled data that is targeted at more specific views that

indiscriminate subscriptions. To this end, several capabilities are available: data filtering,

Complex Event Processing, and Client-Defined Algorithm Download.

1.7.6. Data Filtering

Users can specify a rich range of filtering criteria such as start time, stop time, threshold values,

recording frequency, recording triggers, etc. to be applied in data collection during a project

run. These settings are specified in the FDA configuration file (XML) that is read in by the Logger

at the startup of each application. The settings can be globally applied to all FDA in that run as

well as on a per-FDA basis. As data is considered to be collected from an application, these

collection criteria are first checked before they are collected-and-published. For example, users

can request that a particular FDA not be collected until it has reached a given threshold value or

only when its value is within threshold limits. Or a FDA be collected no more frequently than a

specified period. Or a FDA not be collected prior to a given start time nor after a given stop

time.

1.7.7. Complex Event Processing (CEP)

An event is defined as something that happens at a point in time. In the context of Pelagic

operation, FDA publication can be viewed as a simple event. Figure 6 illustrates an example

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 22

where the onboard monitoring system of a car may subscribe to data from several different

sensors: a sensor that indicates whether the driver is in the seat and a sensor that indicates the

current speed. Each sensor publishes the states of these sensors periodically. An FDA Listener in

the onboard computer might observe that the driver has left the seat and the speed is above 10

mph. In this example, the runaway car notification is a Complex Event, that is, a higher level

event that is inferred from the occurrences of lower level events. Complex Event Processing

performs operations on complex events, including reading, creating, transforming, and making

inferences on them.

speed
50

driverInSeat
no

Δt < 2 secCar

has

has

runAwayCar

raises

Figure 6. Illustration of Complex Event

Note that because the trigger rules are specified in the language of the application domain as

opposed to being specified in a CEP-specific language, users and system engineers can readily

understand the CEP trigger rules without needing to learn the language of a specific CEP tool.

CEP Inference Engine. The CEP Inference Engine subscribes to the FDAs that can serve as

events. As FDA values are received, the CEP Engine determines what “IF” clauses are triggered,

performs the execution of the inference rule to create the Complex Event, adds that Complex

Event to its assertion set, and publishes the FDAs associated with the “THEN” part of the

inference rule.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 23

Streamer

Archive

Metalog

DA
TA

CEP KB
CEP

EngineLogger

Archiver

Listeners

Figure 7. Complex Event Processing

Example Application

An example distributed system has been devised to illustrate the functionality that has been

accomplished to date. Figure 8 illustrates data interactions between a Radar application, a

Command and Control application, and a Resource Management application. Data entities

within the Radar application include target information and a track processing rate metric.

Pelagic™ exposes these application data entities, storing information about them in a MetaLog.

The Radar is able to publish either of these data entities by invoking a call to an Pelagic™ Logger

library function, with parameters that provide an id (identifying the particular data entity), the

address of the data entity, and the size of the data. The data, along with the id and a small

amount of execution context information, is published on the distribution bus as a stream of

octets. Pelagic™ uses the MetaLog information for the given id to provide the domain-specific

semantics for this octet stream. In Figure 8, this is shown through having one type of data

(target data) published for use by Command and Control while having another type of data

(track processing rate) published for use by Resource Management. Because the data is

published as an octet stream, any variety of data entities can be published without needing to

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 24

create a separate interface specification, such as DDS IDL, for each specific data entity. The

listener within Command and Control or Resource Management receives the id, execution

context information, and application data, and applies the domain-specific context to the octet

stream.

Computer 2 (Linux)Computer 2 (Linux)
Computer 1
(Windows)
Computer 1
(Windows)

Distribution Bus (RTTK)

Phased Array
Radar 1

Phased Array
Radar 2

Air Traffic
Radar

CPU
Agent

Command and
Control

Network
Traffic
Agent

Resource
Manager

Tracker

Figure 8 Enabling Dynamic Adaptive Resource Management

In this example, two Resource Monitoring (RM) agents (a CPU Agent and a Network Traffic

Agent) were produced as well a (simulated) phased array Track Production Rate performance

report FDA. The RM Agents demonstrated how strongly typed data on OS-level resources could

be captured in non-intrusive, standalone daemons. The Track Production Rate FDA illustrated

how the existing PelagicTM application data capture mechanisms are sufficient to extract meta-

data from applications so that the applications themselves can be viewed as networked

resources by Resource Monitors.

A variety of scenarios, including failure scenarios, were employed to demonstrate the ability to

collect and publish system and application performance data. The “Memory Failure” scenario

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 25

illustrated that the CPU Agent showed increasing values of stack space in use as the stack

transitioned to an overflow state, and increasing values of process virtual memory size as the

heap reached a state of exhaustion. The “Link Failure” scenario illustrated that the Traffic Agent

showed a sudden stoppage of packets on the associated network interface when the Ethernet

connection was removed, and additionally demonstrated the ability to instrument an

application to publish performance data. These results validated the proposition that real-time

data collected via PelagicTM provides a good basis for developing Event Models for use in CEP.

Example Code

The incorporation of Pelagic into a system is through a two-step process.

1. Extract Metadata - Identify data types for runtime capture and extract schema with

MetaGen.

2. Instrument the Application - Within your Application, Start Pelagic and insert Data

Instrumentation Points

The following example shows the two-step process.

Step 1 – Extracting Meta Data with MetaGen
Figure 9 shows the process of using Pelagic’s MetaGen to extract application MetaData.

Figure 9 – Example Showing Pelagic MetaGen

Key : -o (object file defining the datatype structure);

metagen -o WeatherReading.o -n FDA_55 -d Tc::WeatherReading -m $METALOG_FILENAME

metagen -o NestTest.o -n FDA_1728 -d Tc::NestTest -m $METALOG_FILENAME

RTTK
MetaGen

T l

Application’s
object file

Instrumentation
Point Name

Software Data
Type

MetaLog

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 26

-n (optional user number uniquely identifying the datatype to be captured);

-d (datatype identifier as specified in source code)

-m metalog filename

Step 2 – Instrumenting the Application

Within the application start Pelagic and insert Instrumentation by passing your Application to

Pelagic “Capture” function. The Pelagic include file declaring the capture function in any

translation unit (code file) capturing The Pelagic library statically linked into the application. The

example currently shows the optional user defined identifier. The real identifier comes from

code and is human readable, for example “namespace::classname”.

Figure 10 below shows an example program starting Pelagic and recording data. Figure 11 and

Figure 12 show the code for some example data types. Figure 13 shows some sample output

that was archived in an HDF5 log file.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 27

Figure 10 – Example C++ Main Showing Calls to Pelagic

#include "WeatherReading.hxx"

#include "NestTest.hxx"

#include "RttkStartup.hxx"

#include "RttkCapture.hxx"

int main(int, char**)

{

 int status = 0;

 // Use MetaGen here to extract and datatypes at run time.

 // Start the RTTK library, passing in configuration XML file which

 // associates the captured datatypes with publishers

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 28

Figure 11 – Datatype WeatherReading

 class WeatherReading

 {

 public:

 WeatherReading();

 WeatherReading(double time, int temp, int pressure);

 void print(std::ostream& os) const;

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 29

Figure 12 – Datatype NestTest

 class KeyLookup // nested within NestTest as a data member
 {
 public:
 KeyLookup();
 KeyLookup(int hash, int clash);
 ~KeyLookup();
 void hash(int value);
 void clash(int value);
 int hash() const;
 int clash() const;
 private:
 int hash_;
 int clash_;
 }; // class KeyLookup

 enum class NestTestArrayDims : int
 {
 MAX_INT_ARRAY = 4,
 MAX_DOUBLE_ARRAY_1D = 5,
 MAX_DOUBLE_ARRAY_2D = 6,
 MAX_FLOAT_ARRAY_1D = 7,
 MAX_FLOAT_ARRAY_2D = 8,
 MAX_FLOAT_ARRAY_3D = 9
 }; // enumerate demonstrated array data member lengths

 class NestTest
 {
 public:
 NestTest();
 ~NestTest();
 int get_found() const;
 void set_found(int value);
 KeyLookup get_keyLookup() const;
 void update(int updateKey);
 private:
 int found_;
 KeyLookup keyLookup_;
 int intArray1D_[(int) NestTestArrayDims::MAX_INT_ARRAY];
 double doubleArray2D_[(int) NestTestArrayDims::MAX_DOUBLE_ARRAY_1D]
 [(int) NestTestArrayDims::MAX_DOUBLE_ARRAY_2D];
 float floatArray3D_[(int) NestTestArrayDims::MAX_FLOAT_ARRAY_1D]
 [(int) NestTestArrayDims::MAX_FLOAT_ARRAY_2D]
 [(int) NestTestArrayDims::MAX_FLOAT_ARRAY_3D];
 }; // class NestTest

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 30

Figure 13 – Hdf5 Output from h5dump

HDF5 "datastore.h5" {
GROUP "/" {

 DATASET "Tc::WeatherReading" {
 DATATYPE H5T_COMPOUND {
 H5T_IEEE_F64LE "time_";
 H5T_STD_I32LE "temperature_";
 H5T_STD_I32LE "airPressure_";
 }
 DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }
 DATA {
 (0): {
 0,
 -1000,
 2000
 },
 (1): {
 100.001,
 -999,
 2001
 }
 }
 }

 DATASET "Tc::NestTest" {
 DATATYPE H5T_COMPOUND {
 H5T_STD_I32LE "found_";
 H5T_COMPOUND {
 H5T_STD_I32LE "hash_";
 H5T_STD_I32LE "clash_";
 } "keyLookup_";
 H5T_ARRAY { [4] H5T_STD_I32LE } "intArray1D_";
 H5T_ARRAY { [5][6] H5T_IEEE_F64LE } "doubleArray2D_";
 H5T_ARRAY { [7][8][9] H5T_IEEE_F32LE } "floatArray3D_";
 }
 DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }
 DATA {
 (0): {
 1001,
 {
 1,
 10
 },
 [0, 1000, 2000, 3000],
 [0, 100, 200, 300, 400, 500,
 10000, 10100, 10200, 10300, 10400, 10500,
 20000, 20100, 20200, 20300, 20400, 20500,
 30000, 30100, 30200, 30300, 30400, 30500,
 40000, 40100, 40200, 40300, 40400, 40500],
 [0, 10, 20, 30, 40, 50, 60, 70, 80,
 100, 110, 120, 130, 140, 150, 160, 170, 180,
 200, 210, 220, 230, 240, 250, 260, 270, 280,
 300, 310, 320, 330, 340, 350, 360, 370, 380,
…
 6601, 6611, 6621, 6631, 6641, 6651, 6661, 6671, 6681,
 6701, 6711, 6721, 6731, 6741, 6751, 6761, 6771, 6781]
 }
 }
 }

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 31

Questions and Answers

What does MetaGen need to extract metadata?

Q: Does MetaGen depend on using extra information in the binary designed for use by a

debugger? Does the code have to be compiled with a special compiler?

A: Yes, the technology uses compiler artifacts (symbols and structures some of which a

debugger might use). It also extracts some info about the hardware platform (e.g.,

endianness).

The Pelagic Metagen does require a “-g” flag to access some of the info it needs (like use define

names) from the object files (.o). If you don’t want your executable (.exe) to be compiled with

“-g" you can compile a “.o” file with and without the “-g” and then link your executable without

the ”-g” and let MetaGen extract info from the other “.o”. Regardless the metadata extraction

is automated and the real-time archive of data + schema is available.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 32

Summary

Pelagic is a platform that provides a set of tools, services, and frameworks for monitoring and

controlling real-time distributed systems. It enables system developers and integrators to gain a

white-box view into the states of applications and operating system resources in real-time. It

provides system maintainers with powerful and extensible introspection tools for

troubleshooting problems. It provides system managers with tools for dynamic, adaptive

resource management, enabling system optimization and enhanced survivability. It provides

end-users with an open, scalable, and distributed architecture that is observable in the domain

language of the end-user and allows user-defined extensions, such as complex events and user-

specified algorithms. Pelagic transforms a cacophony of complex, isolated systems into an

orchestrated ensemble of interoperating information sources tuned to the domain languages of

its users.

SBIR Data Rights

Contract Number: N00024-11-C-4144, Contractor Name: FishEye Software, Inc., Contractor

Address: One Mill & Main, Suite 100, Maynard, MA 01754, Expiration of SBIR Data Rights

Period: June 24, 2022. The Government's rights to use, modify, reproduce, release, perform,

display, or disclose technical data or computer software marked with this legend are restricted

during the period shown as provided in paragraph (b)(4) of the Rights in Noncommercial

Technical Data and Computer Software--Small Business Innovative Research (SBIR) Program

clause contained in the above identified contract. No restrictions apply after the expiration date

shown above. Any reproduction of technical data, computer software, or portions thereof

marked with this legend must also reproduce the markings.

http://www.fisheyesoftware.com/Pelagic

 Pelagic Real-Time Platform Capabilities

July 27, 2017Pelagic Real-Time Platform Capabilities

Pelagic Real-Time Platform Road Map

Planned Capabilities

1.8. General Capabilities

• System monitoring and control: enable domain-experts and end-users to analyze and modify

application monitoring and control strategies in their domain-specific language (DSL), without requiring

software (re-)programming.

• Ontology-based information exchange services: enable a Community of Interest (COI) to compose

higher-level information from basic application data using the semantics of the COI domain, specify

information gathering rules based upon their ontology, and have the information published as standard

Web Services data.

The benefits obtained by using these capabilities are:

• Improved situational awareness in the languages of the various COIs via standardized ontologies

• improved system survivability through dynamic, adaptive resource management

1.8.1. Notional Architecture

Based upon the use cases noted in the previous section, an object-oriented analysis was

performed, the design forces were introduced, and an object-oriented design was developed to

carry those forces for the given requirements. That design has been maintained as the basis of

the software implementation. A notional architecture of the resulting current design is shown

in Figure 2.

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 1

Open Analysis & Integration

Pre-Pub
Config

Archiver

Real-
Time

Process

D
AT

A

Ontolog

Metalog

Data Capture & Distribution

Code

Tools & Systems
Database / SQL

MATLAB
Custom

Other Systems
Reconstitution

SQL

MATLAB

ASCII

DDS

HDF5

Standard
Ontologies

Grammar Engine Semantic Web

Metalog Generation

Listeners

Logger Log

Legend
Application Data RTTK Interface

FDA IDE

ONTO IDE

System Control

Pre-Pub IDE
Pre-Pub

Processor

Streamer

Ontology EditingMetalog GenerationMetalog EditingOntology ImportClient-Defined AlgorithmsSystem StartupSystem OperationPost-Run AnalysisPlaybackRTTK Notional Architecture

Figure 14. Pelagic Notional Architecture

Data Distribution Services (DDS) has been incorporated into Pelagic as the streaming

technology. The collection of OS-level data can be done using (non-application) Resource

Monitoring agents (RM Agents).

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 2

1.8.1.1. OS-Level Resource Monitoring Agents (RM Agents)

In addition to collecting data from applications, integrators and system maintainers may also

need to monitor the underlying operating system resources for their performance (e.g.,

memory usage, paging, network traffic, etc.) in order to detect resource degradations and

failures or to understand resource loading patterns imposed by the running applications.

Having access to such data in real-time allows system maintainers to anticipate resource

degradation and allows integrators to configure their applications to more optimally use the

operating system.

The process for developing RM Agents is essentially the same as the process for instrumenting

an application with data collection, except there is no pre-existing application providing the

data sources. Rather a standalone “application”, referred to as an RM Agent, is devised that

packages the code that queries the OS-level resources for metrics of interest (periodically, say),

and records this data into an FDA that has been defined specifically for the appropriate data

types. Similar to applications, the RM Agent contains a Logger that is configured using a

configuration file. Pelagic provides such standalone RM Agents through its SOA to act as

standalone publishers. At this point, Pelagic offers two RM Agents, a CPU Agent and a Network

Traffic Agent. RM Agents can have additional configuration file entries beyond the FDA

collection controls. For example, the CPU Agent can read the run identifiers to indicated which

processes from which to collect metrics and the Network Traffic Agent can read the IP sockets

that it is to monitor. There are plans to add more RM Agents, such as Thread Monitoring Agent,

Disk Usage Agent, etc.

Since RM Agents are dedicated to a single application data type and do not need to be open to

extension as do application data types, Pelagic has proves a strongly-typed interface in addition

to the generic FDA interface for non-FDA subscribers (i.e., clients who are interested strictly in

system monitoring, not application monitoring). These interfaces are expressed in IDL for

clients to compile into their applications using the classic DDS publish-subscribe strategy.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 3

Pelagic provides these standalone RM Agents through its SOA to act as standalone publishers,

as well as the FDA-based publishers.

1.8.2. Data Listening

Pelagic Loggers publish not only the FDA data that they collect from applications and RM

Agents, but also publish the FDA Data Schema themselves (because FDA Data Schema are data,

that is, metadata). The lifespans of FDA data are controlled by the Data Writers’ and Data

Readers’ QoS (e.g., HISTORY and LIFESPAN). The lifespans of FDA Data Schemas are controlled

by the Logger’s Data Writer, which locks the lifespan of an FDA Data Schema to match that of

the Logger itself (using the Resource Acquisition is Initialization pattern).

With this publication technique, DDS subscribers can subscribe to both FDA Schema Topics and

FDA Value Topics. Moreover, Pelagic provides pre-built C++ bindings to the streaming

infrastructure as a value-added layer to DDS, referred to as an “FDA Listener”. An FDA Listener

is a C++ DDS-subscriber API that allows clients to discover FDA Schema that are currently

available, to receive FDA Value streams, and to tie FDA Listeners to other tools, such as

MATLAB, Complex Event Processing Engines, and any processing code that uses the C++

standard iostream and fstream interfaces.

Interest Tags. While a system is running, there are periods of time when an operator’s interest

may peak, for example, due to a sudden increase in the number of detections. As part of its

SOA products, Pelagic provides a service, called “Interest Tags”, that will insert user-defined

markers into the time stream to identify those periods of operator interest. An Interest Tag is

simply a pre-defined FDA that has a user-specified string and an on/off flag that is recorded

when the Interest Tag Service is called. This service records its FDA data along with the rest of

the FDA application data, so that when post-run analyses and playback are run, the analyst or

operator can use any selected Interest Tags to filter the run data or skip to a point in time of

interest.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 4

DDS Agents. Pelagic also provides a “DDS Agent” in its SOA. A DDS Agent is an embeddable (API)

or a standalone product that attaches to a specified Domain and allows its users to have it

connect to and stream-in any Topics (not just FDA Topics). DDS Agents allow users to discover

and listen to any Topics from any Domain. Similar to FDA Listeners, DDS Agents expose the C++

standard iostream and fstream interfaces to allow users to tap into data from arbitrary

applications. For example, one use of a DDS Agent is to allow a legacy application to use its own

data collection infrastructure to record data streamed-in from newer applications into its own

data sets (i.e., de facto backward compatibility of DDS-enabled applications).

1.8.3. Application Control Framework

While the DDS publish-subscribe (asynchronous) infrastructure is effective at the monitoring

aspects of system management, publish-subscribe is not the best interaction choice for the

command and control of applications. Typically, a synchronous (blocking) interface is preferred

for controlling applications, where a remote procedure call on an application will block the

calling thread until a return status is received from the application. Such a blocking call protects

the transactional integrity of the request and allows system control to proceed in a

deterministic way. Effective overall monitoring and control of a system almost always entails a

mix of synchronous command and control using point-to-point communications between

known pairs and asynchronous notifications from unknown6 publishers to unknown

subscribers.

Pelagic provides a set of C++ framework classes that facilitate the staging of remote procedure

calls from FDA Listeners (or any C++ programs). These framework classes encapsulate the

6 Publishers can choose to make themselves known to subscribers if they include self-identification data in

the data they publish, but the default situation is that subscribers do not know from where the data came.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 5

underlying remote procedure technology (e.g., CORBA) with gateway lifecycle control and

interface implementations for both client-side requests and server-side implementations.

An example use of the Application Control Framework is to build a client monitoring and

control application that embeds a remote procedure call mechanism, importing the tracking

control interface into the radar application that produces track data. Additionally, in this client

application, embed an FDA Listener that subscribes to the rate of track creations as defined by

the FDA. Furthermore, this application provides a presentation layer to show the user this

performance metric. While a run is proceeding, the track creation rate may suddenly increase

and the user decides to adjust the configuration settings on the application using the remote

procedure interface using the embedded remote procedure call mechanism.

1.8.4. Playback Services

Once a system has run for a period of time and has logged its FDA data, Pelagic provides

services for playing back any selected sets of FDAs from the log files for any selected duration of

time. As illustrated in Figure 2, this data is formatted into its native streaming format and

passed to a Streamer. Since the Streamer is agnostic to its buffering sources, it streams the data

just as if it were originating in running applications, pushing it through its normal publishing

channels. However, in playback mode, controls are available similar to those found on DVR

players: stop, pause, fast-forward, fast-reverse. These capabilities are useful for reviewing

previous system runs, for testing different configurations of data-consuming applications, for

supplanting simulation drivers, and for performing experiments on Pelagic extensions (see

below).

1.8.4.1. Complex Event Processing (CEP)

An event is defined as something that happens at a point in time. In the context of Pelagic

operation, FDA publication can be viewed as a simple event. Figure 6 illustrates an example

where the onboard monitoring system of a car may subscribe to data from several different

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 6

sensors: a sensor that indicates whether the driver is in the seat and a sensor that indicates the

current speed. Each sensor publishes the states of these sensors periodically. An FDA Listener in

the onboard computer might observe that the driver has left the seat and the speed is above 10

mph. If the difference in time between these two readings is less than 2 seconds, then the

onboard car monitoring system should autonomously notify its accident response service of a

runaway car. In this example, the runaway car notification is a Complex Event, that is, a higher

level event that is inferred from the occurrences of lower level events. Complex Event

Processing performs operations on complex events, including reading, creating, transforming,

and making inferences on them.

speed
50

driverInSeat
no

Δt < 2 secCar

has

has

runAwayCar

raises

Figure 15. Illustration of Complex Event

Complex Event Modeler. Pelagic provides a CEP modeling tool, CEP IDE, that is layered on top of

the FDA IDE. This CEP IDE enables users to browse a MetaLog for FDAs, which serve as low-level

events, and display them as entities in a graphical composition window. The CEP IDE provides

tools for specifying various types of event relationships, including timing, causality, and

aggregation, and using them to link entities in the composition window, similar to a class

diagram editing tool. The specification of conditions on the events and relationships that

trigger a specific complex event is referred to as a trigger rule for the complex event. These

trigger rules are expressed in an “IF-THEN” grammar predicated on simple boolean expressions

on the properties of the participating events and their relations.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 7

s : CarSpeedFda

carId : VID
time : Time
speed : float

d : CarDriverFda

carId : VID
time : Time
inSeat : bool

delta : Time { = |d.time – s.time | }

IF((s.speed > 10) AND (d.inSeat = no) AND (delta < 2))

THEN r:RunAwayCar(d.time, d.carId)

r : RunAwayCarFda

time : Time
carId : VID

Figure 16. Illustration of Complex Event Modeling

Note that because the trigger rules are specified in the language of the application domain as

opposed to being specified in a CEP-specific language, users and system engineers can readily

understand the CEP trigger rules without needing to learn the language of a specific CEP tool.

CEP Inference Engine. The CEP Inference Engine subscribes to the FDAs that can serve as

events. As FDA values are received, the CEP Engine determines what “IF” clauses are triggered,

performs the execution of the inference rule to create the Complex Event, adds that Complex

Event to its assertion set, and publishes the FDAs associated with the “THEN” part of the

inference rule.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 8

Streamer

Log

Metalog

D
AT

A

CEP KB
CEP

Engine

CEP IDE

Logger

Archiver

FDA IDE

Listeners

Figure 17. Complex Event Processing

1.8.4.2. Client-Defined Algorithm Download

Another form of pre-publication processing that is available with Pelagic allows users to

download algorithms to a staging area of a publisher to be applied by the publisher to a data

stream prior to publication of the data stream and, instead of (or in addition to) publishing the

source data, publish the output of the algorithm. This capability assumes that the algorithm can

be expressed as a script file for an analysis package that is available to both the subscriber and

the publisher platforms, for example MATLAB. The following sequence of steps is suggestive.

Variations in order and detail are likely. For example, in one scenario, the user may have an

algorithm already defined and wants to inject it into an FDA stream to divert the stream to an

output file. In another scenario, the user may find that the volume of raw data from some set of

FDAs is unwieldy and wants to distill the raw data into a more succinct, more understandable

set of processed FDAs.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 9

LogDA
TA

M
at

h
Pk

g

Listeners

Archiver

Streamer

Analytic
Engine

Sc
rip

t/
FD

A

Metalog

Algorithm IDE

FDA IDE
Logger

Figure 18. User-Defined Algorithms

Algorithm Definition. A user creates a data processing script using an analysis package and

saves the script as a named file.

Algorithm Injection Specification. The user identifies which FDAs are to be earmarked for

algorithmic processing. There are various ways that a user can find FDAs:

o If the user is currently listening to a running system, the FDAs are already being

streamed to the client.

o Using a standalone FDA Listener, the user can determine what applications are currently

publishing the identified FDAs by searching the current set of published FDA Schema

Topics and then subscribing to the FDAs of interest.

o The user can search the Archived Logs for FDAs that have been published over some

past period of time.

o The user can use the FDA IDE interface to a MetaLog to find the FDAs of interest.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 10

Once the FDAs have been identified, the user decides which application runs should inject the

algorithm. For current runs and Archived Logs, the user obtains the “runId” keys7 of the

published FDAs to indicate which application runs are to inject the algorithm. For future runs,

the timestamp of the runId is left blank to indicate that all future runs should inject the

algorithm (depending upon the injection-enabling settings in their Logger’s configuration files).

FDA Bindings. Next, the user browses the MetaLog using the FDA IDE and finds the FDA that is

to be bound to the input arguments of the data processing script. The user identifies the fields

of the FDA that will be bound as input parameters to the algorithm. The user can choose to

bind the results that are output from running the script to FDAs (existing or new FDAs) in

addition to or instead of writing an output file. An XML file is created that identifies the script

file, the output file (if any), the FDA input/output bindings, and additional processing settings

(such as data ranges, time slices). By convention, the name and extension of this file will be

used by Loggers to obtain the find the injection request.

Algorithm Submission. The user downloads the script and bindings files to the server file system

area designated for Logger configuration files. The user may also modify Logger startup

configuration files to enable algorithm injection processing and/or to name the particular

bindings file just submitted.

Algorithm Execution. At application program startup, the Logger reads its startup configuration

file. This file indicates if the Logger is enabled for injecting client-supplied algorithms and what

client-supplied algorithms to accept. The latter setting is a list of named bindings files, with

wildcarding allowed. If enabled, the Logger reads the list of bindings files and, for each bindings

7 Note that the “runId” key contains two fields: a logical field that identifies the application’s executable

program, and a timestamp field that identifies the time at which a run started.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 11

file, checks whether all the identified FDAs are enabled for streaming, uses the mapping

specified in the bindings file to set up the data marshals for each input argument and each

output value, and injects the algorithm into its publication stream using a chain-of-command

control pattern. The Logger can be configured to execute the algorithms directly in the Logger’s

thread or in their own thread. As an FDA value is streamed, if it is needed in the chain of

algorithms, its participating fields are passed as arguments to the algorithm for processing by

the algorithm. After the algorithm is complete it adds the results to the output file (if so

configured) and/or publishes the generated FDAs (if so configured).

1.8.5. Ontology-Based Information Exchange Services

FishEye plans8 to augment Pelagic with Ontology-Based Information Exchange Services (IES)

that are based on domain semantics using information exchange standards, such as UCore9

(XML) and C2 Core10 (OWL) using the FDA infrastructure as a base.

8 FishEye has submitted a Small Business Innovation Research proposal to seed the planned work.

9 UCore (Universal Core) is an information exchange specification and implementation profile developed

by a collaborative of the Departments of Justice, Homeland Security, Defense, and National Intelligence. It

is based on a vocabulary of most commonly exchanged concepts (Who, What, When, Where) and an XML

representation of those concepts. It includes extension rules to allow tailoring to specific mission areas.

UCore supplies a messaging framework to package and unpackage the content consistently

10 C2 Core (Command and Control Core) is an extension of UCore for the Joint C2 Community of Interest

that provides a rich ontology for the C2 domain, sufficient for interoperability on the Semantic Web.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 12

1.8.5.1. Ontolog

In computer science and information science, an ontology is a formal representation of what is

known about a domain expressed as a set of concepts and the relationships between those

concepts. In comparison, an FDA in Pelagic is a formal representation of what data is available

from a running system and how elements of the data contribute to an information concept of

interest to a user, however, in the current version of Pelagic, that information concept is only

knowable by ad-hoc connotation. The vocabulary of the data elements is whatever the system

developers found useful for advancing a design and implementation and may not be a

consensus representation of any given community of interest. Likewise, the naming and

description of an FDA is an arbitrary choice by a user and, therefore, can inhibit community-

wide recognition of the intended meaning and usefulness of an FDA. The planned ontology

extensions will make FDAs much more effective across a community of users by organizing

them into an ontology agreed upon by its users. To this end, it is planned to augment the

Pelagic tool to model and capture ontologies, to maintain them in an Ontolog, and to allow

users to name and organize their FDAs within the concepts and relationships of those

ontologies.

A preliminary top-level design has been done as a first step toward this goal, shown in Figure

19. Each domain will have its own ontology, so a Domain class will be introduced so that an

object of Domain will serve as a root to each ontology. Domains can have sub-domains, which is

modeled by a simple “subdomain/superdomain” association. Within a Domain, the concepts

will be represented by DomainEntity classes, and the relationships between concepts will be

represented by Relation classes. Detailed characteristics of how DomainEntities interact are

modeled by the Role association class. The data that evaluates the state/condition of a concept

at a given time and space, by definition, is an instance of an FdaSchema.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 13

Metalog

FdaSchemaDomainEntity

Relation

source
name
aliases
definition
toXml()
toOwl()

Domain
domainId
domainName

Role
name
multiplicity

Role
name
multiplicity

endstart

Ontolog

subdomain

superdomain

source
name
aliases
definition

Figure 19. Preliminary Design of Ontolog

1.8.5.2. Ontology-based Data Distribution Services

With this modeling approach, a user of the ONTO IDE can specify an ontology as a graph with

DomainEntity objects as nodes and Relation objects as edges and then link DomainEntity

objects to FDAs to provide domain-specific views of the FDA data distribution service. As a

result, subscribers can opt to register for information about domain concepts (as an alternative

to registering for FDAs) and receive publications in terms of the concepts-and-relationships of

their COI. Additionally, in the spirit of the Semantic Web, Pelagic will be enhanced with export

interfaces to publish information in both XML and OWL formats.

http://www.fisheyesoftware.com/Pelagic

 July 27, 2017
 Pelagic Real-Time Platform Capabilities

www.FishEyeSoftware.com/Pelagic 14

i Revision to paper of March 1, 2017

ii Pelagic and the Pelagic Real-Time Platform are Trademarks of FishEye Software, Inc. Pelagic capabilities are

protected under US Patent 9652312 and contain SBIR Data Rights.

MetaGen, MetaLog and MetaData Injection are Trademarks of FishEye Software, Inc.

iii Pelagic™ is a rebranded from the prior name of the Real-Time Tool Kit™ (RTTK™)

http://www.fisheyesoftware.com/Pelagic

	Overview
	Pelagic Real-Time Platform Capabilities
	1.1. Motivation
	1.2. Background

	Concept of Operation
	1.3. Actor Diagram
	1.4. Operational View

	Notional Architecture
	Functional Capabilities
	1.5. Data Schema Definition
	1.6. MetaLog Creation
	1.7. Data Collection
	1.7.1. Application Data Collection
	1.7.2. Data Streaming
	1.7.3. Data Archiving
	1.7.4. Playback Services
	1.7.5. Pre-Publication Data Processing
	1.7.6. Data Filtering
	1.7.7. Complex Event Processing (CEP)

	Example Application
	Example Code
	Step 2 – Instrumenting the Application

	Questions and Answers
	What does MetaGen need to extract metadata?

	Summary
	SBIR Data Rights
	1.8. General Capabilities
	1.8.1. Notional Architecture
	1.8.1.1. OS-Level Resource Monitoring Agents (RM Agents)

	1.8.2. Data Listening
	1.8.3. Application Control Framework
	1.8.4. Playback Services
	1.8.4.1. Complex Event Processing (CEP)
	1.8.4.2. Client-Defined Algorithm Download

	1.8.5. Ontology-Based Information Exchange Services
	1.8.5.1. Ontolog
	1.8.5.2. Ontology-based Data Distribution Services

