

Avoiding Pi�alls to a Risky and Costly
Real-Time System Lifecycle

A best practice for open and flexible data access for
understanding, integrating, and testing real-time
embedded systems.

TABLE OF CONTENTS

An Ecosystem Driving Real-Time Embedded System Lifecycle Costs and Risks ______________________ 1

Vital Elements of Data Access __ 3

Approaches to Real-Time Embedded Data __ 5

Avoiding Pitfalls to a Risky and Costly Lifecycle ___ 11

Terms __ 12

Authors __ 13

Company Information __ 13

Pelagic and the Pelagic Real-Time Platform are Trademarks of FishEye Software, Inc.

Pelagic capabilities are protected under US Patent 9652312US Patent 9652312 and contain SBIR Data
Rights.

AN ECOSYSTEM DRIVING REAL-TIME EMBEDDED
SYSTEM LIFECYCLE COSTS AND RISKS

Page 1

An Ecosystem Driving Real-Time Embedded System
Lifecycle Costs and Risks

Throughout their lifecycle, real-time embedded systems must expose access to data artifacts to provide
critical indicators of their performance. Such data artifacts are archived at pivotal points of execution to
facilitate subsequent analysis, thereby avoiding interference with the system’s tight timeline and limited
resources. While access to real-time data is critical, it is not typically built into the system and instead
evolves over the system’s lifecycle. Efficient access is significant and vital to lowering lifecycle costs and risks
– the Navy estimates that the “cost of analyzing alone is 40% to 60% of the development cost of large
software systems.”1 Open, portable, self-describing, and flexible access to data artifacts is required to
minimize the lifecycle costs and risks of real-time systems.

THE REAL-TIME EMBEDDED SYSTEM ECOSYSTEM
The ecosystem driving real-time embedded system lifecycle costs and risks refers to the complex network of
technologies, processes, and stakeholders involved in developing and maintaining embedded systems that
operate in real-time environments. Real-time embedded systems are computer systems that must respond
to input or stimuli within a specified timeframe, often in milliseconds or microseconds, and are commonly
used in applications such as aerospace, defense, automotive, and industrial control.

The ecosystem encompasses hardware and software components, development tools, testing and validation
processes, supply chain management, and maintenance and support activities. It also involves various
stakeholders, including hardware and software developers, system integrators, original equipment
manufacturers (OEMs), and end-users.

The challenges of the ecosystem include balancing system performance, power consumption, and cost, while
also addressing the risks associated with system failures, security breaches, and changing standards and
regulations. Furthermore, the rapid pace of technological innovation and the increasing complexity of
embedded systems present ongoing challenges that necessitate continuous improvement and adaptation.

Overall, understanding the ecosystem that drives real-time embedded system lifecycle costs and risks is
critical for ensuring the reliability, security, and longevity of these systems, as well as for enabling
innovation and a competitive advantage in industries that rely on them.

Real-time embedded systems are complex and costly to design, build, and test. Once operational, these
systems require an elaborate ecosystem of experts to maintain and enhance them. Organizations that
initially build these systems are under pressure to deliver and are not necessarily responsible for
maintaining, operating, or enhancing the system. The front-line software development team, which typically
decides on how data capture is implemented, does not have early incentives to invest in open and flexible

1 Navy Automated Test & Analysis (ATA) Policy PEOIWSINST 3086.01, Dated APR 30 2010

AN ECOSYSTEM DRIVING REAL-TIME EMBEDDED
SYSTEM LIFECYCLE COSTS AND RISKS

Page 2

data access strategies. Data capture and analysis is conventionally not addressed, or at best, not aligned with
the development team’s interests. The lack of forethought or misaligned interest triggers an entire lifecycle
of substantial and growing costs and risks.

For example, in 1992, a team at TRW charged with developing a software upgrade for a US Air Force COBRA
DANE2 radar took some proactive steps in exposing real-time data. The approach included real-time capture
of binary data combined with the use of a data dictionary to simplify “data reduction” access to the data3.
The “dictionary” approach, innovative at the time, reduced the development team’s time to maintain data
access. However, over time, this necessitated that operations, sustainment, and enhancement stakeholders
create and maintain their own custom software to analyze non-self-describing and platform– and project-
specific data. This suboptimal process continues today, adding costs and unnecessary development over the
system’s lifecycle (22 years to date). The costs and risks of data processing and analysis compound, where,
for example, the 5-year impact on US Missile Defense Agencies’ costs adds up to $1.3B4.

2 U.S. Air Force COBRA DANE radar in Shemya, Alaska, www.mda.mil/system/sensors.html
3 Ted Selig, Denise Brunelle Priess, and Brian D. Mack. 1992. Data analysis and reporting for real-time Ada
systems. In Proceedings of the conference on TRI-Ada '92 (TRI-Ada '92), New York, NY, USA, 469-476.
4 Ted Selig, July 27, 2025, 3 Reasons Why the Missile Defense Agency wants FishEye’s Pelagic, FishEye
Software, Inc.

http://www.mda.mil/system/sensors.html
http://dx.doi.org/10.1145/143557.143996

VITAL ELEMENTS OF DATA ACCESS

Page 3

Vital Elements of Data Access
Suboptimal capture and analysis decisions resulting from a near-term focus can impact development
projects early in their lifecycle, when the system starts to operate in real-time and is initially integrated. The
decisions’ impact snowballs later in the system lifecycle, with a growing community of stakeholders,
extended use reaching around-the-clock operation, and new teams providing system maintenance and
enhancements. Alternatively, open access to real-time data provides benefits by fully supporting
development, minimizing unexpected costs, and maximizing system capabilities. This is accomplished by
offering all stakeholders simple, flexible, and open access to real-time system data and includes these vital
elements:

High-
Performance

• So data capture does not impact real-time system operation
• To reduce costs of analysis over the system life cycle

Portable • To Enable source data from specialized embedded hardware and computers to
be moved to destination general purpose computers and tools that are used by
downstream analysis and data fusion systems

Self-Describing
Archives

• To decouple analysis and validation tools from the embedded application to
allow independent development cycles.

• To decouple a large community of data consumers from the embedded
application development environment

Open • To allow access without requiring project-specific or proprietary knowledge or
tools

Revealing • To allow access to internal data and data not pre-designed to be exposed
Low Total Cost
of Ownership

• To minimize the long term labor and computing costs of post-processing data

LONG-TERM CHARACTERISTICS OF REAL-TIME SYSTEMS
Some characteristics of long-term of real-time embedded system maintenance and enhancement are:

1. As changes to application software are made over time, its data types also evolve (e.g., revising existing
data type declarations, adding/removing data types);

2. Experience with the system can result in needed changes to data capture choices (e.g., removing capture
choices, adding new capture points);

3. As more types of data are exchanged among increasing numbers of applications, the relative meanings
of the exchanged data become difficult to discern (e.g., differing structure and terminology introduce
semantic gaps), undermining interoperability in Systems of Systems; and

4. In contemporary computing grids, large volumes of a variety of data types are being distributed at high
velocity (Big Fast Data), but the conventional point solution approach is not sufficient to support data
exchange needs in a timely manner nor can it scale to expansive networks (i.e., MxN point-to-point
custom converters cannot be readily built nor can they efficiently handle exchange of large volumes of
data among large numbers of exchange partners).

VITAL ELEMENTS OF DATA ACCESS

Page 4

FOUR APPROACHES TO EXPOSING REAL-TIME EMBEDDED DATA
Real-time embedded system data capture and analysis breaks into three conventional approaches and one
emerging approach:

1. Binary Conventional
2. Text Conventional
3. Network Conventional
4. Meta-Data Injection Emerging

The Binary approach simply takes snapshots of real-time data, tags and records them in a file, which is later
post-processed by offline, specialized tools. The Text approach converts real-time binary data into ASCII text
and stores it in a Text file. The Text data can later be read into offline generalized tools and analyzed once it
is converted from text format back into binary data. The Network approach eavesdrops on data exchange
protocols to capture data sent between subsystems. A fourth approach, Meta-Data Injection, inverts the
conventional processes by collecting metadata offline before real-time execution, thus enabling data to be
recorded in a binary format file that is open, self-describing, and does not require specialized tools or costly
text conversions.

NATURAL TENDENCIES IN REAL-TIME SYSTEM DEVELOPMENT
Real-time system designers and developers typically give secondary consideration to a collection of system
data. Even less consideration is given to non-mission-critical data that is required to integrate, test, validate,
debug, maintain, and enhance systems over their lifecycle. In the early stages of the system life cycle, it is
easy to slide into a process that captures a simple piece of data using a conventional Binary to Text
approach. Such approaches seem like a fruitful way forward, but they can quickly become a disadvantage
and be difficult to escape while under the pressures of new system development. Resistance builds to
transitioning to another approach when the development budget is no longer available, and downstream
costs are accepted and funded. Once adopted, the conventional approaches lead to

• Increased program risks stemming from a lack of visibility into critical data for debugging, validation,
and innovation

• Difficulty in maintaining and expanding system capabilities
• Substantially higher costs for the systems’ downstream ecosystem of analysts, data consumers, system

operators, and maintainers

With foresight and understanding, a system can easily adopt an emerging approach that lowers cost, risk,
and time to market while avoiding the difficulties of the conventional approaches. This emerging approach
requires dedication and an understanding among stakeholders that a commitment to an advanced
approach, although it necessitates an initial investment in understanding and implementing the approach,
will result in a significant reduction of lifecycle costs and risks, while improving sustainability.

APPROACHES TO REAL-TIME EMBEDDED DATA

Page 5

Approaches to Real-Time Embedded Data

CONVENTIONAL APPROACH – BINARY DATA RECORDING
In the early days of computing (pre-2000s), computer hardware and storage devices were not powerful
enough to handle the processing and memory required for data analysis performed simultaneously with
application processing. During runtime, the captured data would be expediently recorded in a format native
to the application and computing platform, saving analysis for offline processing. The typical approach was
to dedicate budget and resources to developing custom converters for each individual application and
platform.

Figure 1. Conventional Binary Data Collection and Data Access

The conventional binary data capture methods offer various pros and cons:

Table 1 – Binary Data Pros and Cons

PROS CONS
• Most efficient and highest performing method

to persist captured data (i.e., saving data to a
disk drive)

• Requires the development of real-time software
to extract data from the real-time critical path,
tag the data type, and record the data to disk.

• Requires development of application specific
tools to access data.

• Requires data handling and analysis tools to be
updated when application data or run-time
platforms change. Configuration management
of tools and applications is complex and
expensive which can be compounded when
there are many data consumers.

• Requires use of the operational embedded
computing resources because it is platform-
specific. Also needs specialized conversion
tools to convert the data artifacts from binary
files. Embedded computing hardware can be
specialized and expensive and is thus a limited
resource.

Real-Time
Application

Real-Time Analysis

Bi
na

ry
 R

ec
or

d

Binary
Archive

Post-Process
Analysis

Bi
na

ry
 C

on
ve

rt

Real-Time Platform Analysis Platform

APPROACHES TO REAL-TIME EMBEDDED DATA

Page 6

The Binary approach offers high performance, but not the other elements required to maximize lifecycle
costs & risks.

Table 2 – Binary Approach – Provides High-Performance but no other Elements

 BINARY
High Performance 

Portable 
Self-Describing 

Open 
Revealing 

Low Total Cost of Ownership 

Clearly, having data capture technology tied to a specific program results in solutions that run the risk of
becoming brittle, non-scalable, non-maintainable, or obsolete. Furthermore, proprietary, non-standard data
formats increase the cost of data analysis tools and hinder the ability to add future capabilities that utilize
that data.

CONVENTIONAL APPROACH – TEXT DATA RECORDING
More recently, computing resources have become affordable commodity items and same-time analysis is
now a viable option. However, due to the absence of enterprise data processing solutions (e.g., standard
formats, platform-independent capture tools), the conventional approach has remained largely unchanged
(Figure 2): point-specific tools for data capture, along with custom converters. Even with the emergence of
open data exchange standards such as eXtensible Markup Language (XML)5 and JSON, standard media
converters nevertheless add processing and transport overhead that impedes the performance of real-time
systems.

Figure 2. Conventional Text Data Collection and Data Access

5 http://en.wikipedia.org/wiki/XML

Real-Time
Application

Real-Time Analysis

Te
xt

 C
on

ve
rt

an

d
Re

co
rd

Post-Process
Analysis

Te
xt

 L
oa

d
an

d
Co

nv
er

t

Real-Time Platform Analysis Platform

Text
Archive

APPROACHES TO REAL-TIME EMBEDDED DATA

Page 7

Table 3 – Text Data Approach Pros and Cons

PROS CONS
• Captured data is portable across platforms

allowing analysis to be performed on general
computers.

• Captured data file is self-describing, allowing
downstream data to be easily interpreted

• Requires the development of real-time software
to convert data from the real-time binary to
ASCII formats.

• Loads real-time system with binary to ASCII
conversion processing.

• Leads to significant increase in storage space
and network bandwidth to store and transfer
data files.

• Requires post processing tools to convert ASCII
data back to binary before using the data, thus
adding time for each analysis.

The Text approach offers flexible data that is portable, self-describing, and open, but fails to provide optimal
performance and increases lifecycle costs.

Table 4 – Text Approach – Provides Flexible Data at a Cost

 TEXT
High Performance 

Portable 
Self-Describing 

Open 
Revealing 

Low Total Cost of Ownership 

CONVENTIONAL APPROACH – NETWORK RECORDING
Often, real-time embedded systems are made from multiple subsystems that communicate within a single
processor or between computers over a network. This communication follows a selected protocol that
ensures timely and accurate data transfer, which may cross different operating systems, applications, and
computer platforms. Data must travel through communication protocol stacks and be converted to a
machine-independent format to allow travel across different types of computing platforms. Data may be
transmitted using a standard communication protocol (e.g., XML, DDS, ASCII, RPC, Java RMI, CORBA).

The advantage of this Network approach is that the development effort and processing required to expose
the data are already available for the application, making it easy to use for capture and post-analysis. In
such an approach, data is converted at the source using a resident Data Schema. The receiving platform
converts the data back to its representation using a copy of the same Data Schema. This approach requires
coordination to ensure the applications maintain common Data Schema representations. One consequence
of manual coordination is that it is difficult or impossible to change a Data Schema at runtime. Another
consequence is that the approach requires computer resources on the source and target platforms every
time data is sent between platforms.

APPROACHES TO REAL-TIME EMBEDDED DATA

Page 8

Figure 3. Conventional Network Collection and Data Access

Table 5 – Network Approach Pros and Cons

PROS CONS
• The application is already exposing and

formatting data so limited incremental
processing is needed for data capture.

• Data is portable across platforms allowing
analysis to be performed on general purpose
computers.

• Captured data can be self-describing, allowing
downstream data to be easily interpreted

• Data access limited to inter-subsystem
communication data.

• Requires the development of real-time software
to convert data from the real-time binary to
ASCII formats.

• Loads real-time system with protocol
conversion processing.

• Leads to significant increase in storage space
and network bandwidth to store and transfer
data files.

• Requires post processing tools to convert ASCII
data back to binary before using the data, thus
adding time for each analysis.

The Network approach offers some flexibility that depends on the network transfer protocols, but still fails
to provide optimal performance while increasing lifecycle costs.

Table 6 – Network Approach – Provides Some Flexibility but at a Cost

 NETWORK
High Performance 

Portable 
Self-Describing ?

Open ?
Revealing 

Low Total Cost of Ownership 

Real-Time
Application

Real-Time Analysis

Pu
bl

ish Post-Process
Analysis

Bi
na

ry
 L

oa
d

Real-Time Platform Analysis Platform
Binary
Archive

Subscribe

APPROACHES TO REAL-TIME EMBEDDED DATA

Page 9

EMERGING APPROACH – METADATA INJECTION DATA RECORDING
An emerging approach called “MetaData Injection” flips the process by extracting an application’s natural
data format before run-time and injecting that MetaData to streamline real-time capture while creating an
open and self-describing data access for data fusion and analysis. The approach adheres to a philosophy of
working with data in its original and natural form, only converting it when necessary to optimize real-time
performance. The high-performance process is made possible with software tools that extract MetaData
describing the combination of platform, operating system, compiler, and application natural data binary
formats. With access to MetaData upfront, an HDF5 (Hierarchical Data Format6) file format can be pre-
populated with the data, and real-time data can be seamlessly flowed into the file. Upfront MetaData also
enables real-time data transformation, integrates with other subsystems through distribution network
protocols, and provides access for real-time analysis.

Figure 4. MetaData Injection Approach, Data Collection, and Data Access

Table 7 – MetaData Injection Approach Pros and Cons

PROS CONS
• Recording in native binary format provides

high-performance in real-time
• Captured data is portable across platforms

allowing analysis to be performed on general
computers.

• Captured data file is self-describing, thus
allowing downstream data to be easily
interpreted

• Analysis does not require reformatting of data
• Minimizes storage requirements without

requiring additional processing
• Open format allows anyone to access the data

• Required up-front commitment of a new-
system development team to the approach

• Requires investment to transition existing
system to the approach.

6 https://www.hdfgroup.org/why_hdf/

Real-Time
Application

Real-Time Analysis

Bi
na

ry
 R

ec
or

d

Post-Process
Analysis

Bi
na

ry
 L

oa
d

Real-Time Platform Analysis Platform
Self-Describing

Open Binary

https://www.hdfgroup.org/why_hdf/

APPROACHES TO REAL-TIME EMBEDDED DATA

Page 10

The MetaData Injection approach is able to meet all the objectives to minimize lifecycle costs & risks

Table 8 – MetaData Injection Approach – Meets Objectives to Minimize Lifecycle Costs & Risks

 METADATA
INJECTION

High Performance 
Portable 

Self-Describing 
Open 

Revealing 
Low Total Cost of Ownership 

AVOIDING PITFALLS TO A RISKY AND COSTLY LIFECYCLE

Page 11

Avoiding Pitfalls to a Risky and Costly Lifecycle

Minimizing a real-time system’s lifecycle costs and risks can be achieved with a little forethought and
planning in the system’s data capture and analysis approach. When evaluating the approach, it is also
important to understand that the system’s software development team has a significant influence on the
approach taken, as they implement it. While it can be easy for a project and development team to
marginalize this decision, it has a substantial and lasting impact on the entire system lifecycle.

A real-time system’s lifecycle costs and risks can be minimized by ensuring that both planned and
unplanned data artifacts are exposed to a broad audience, thereby supporting the system’s operational and
performance objectives. A process that combines the Binary approach, using high-performance native
binaries with attributes of the Text approach, provides the opportunity to achieve the best practice
approach, offering portable, open, and self-describing data. This MetaData Injection approach, when
adopted, minimizes the lifecycle costs and risks of a real-time system.

Table 9 – Summary of Approaches

 BINARY TEXT NETWORK METADATA
INJECTION

High Performance    
Portable    

Self-Describing   ? 
Open   ? 

Revealing    
Low Total Cost of Ownership 

  

When a system’s full-lifecycle stakeholders collaborate and take the initiative, the MetaData Injection
approach can quickly provide a method to lower the systems’ lifecycle costs and risks. A balanced
representation from the lifecycle stakeholders can easily highlight the importance of portable, self-
describing, open, revealing and portable real-time data that will inspire more capabilities at a lower cost
while reducing risk. The development team will even realize these benefits immediately after their
influential decision on the direction forward. An enlightened move by system stakeholders can make a
significant impact to a large agency by increasing system value and reducing risk while savings billions from
the agency’s lifecycle costs.

TERMS

Page 12

Terms

The following are some terms used in the white paper.

ASCII American Standard Code for Information Interchange is a character-encoding
scheme

CORBA Common Object Request Broker Architecture
Data Data is a set of values that is stored or transmitted, can represent similar

meaning, yet differs in binary format on varying computing platforms. Data
includes characteristics such as:

• Data formats like integer, float, enumerations (numbers that represent
different meanings like 1 = True and 0 = False) or ASCII character
representations

• Size and structure of data like 8-bit or 16-bit characters, 16, 32, 64-bit
integers, 32 or 64-bit floats in formats like IEEE 7547 or MiniFloats8 ,
Fixed Point, Binary Coded Decimal

• Data identifiers so that instructions can access and manipulate the values
in memory

• Data semantics like arrays of Data or memory pointers to Data
• Endianness9 convention for the byte order used to encode binary data
• Bit Packing or Bit Maps10

Data Schema A Data Schema specifies how the physical storage of Data on a Platform maps
into its computational form. Note that Data Schema are NOT typically output from
conventional compilation procedures.

DDS Data Distribution Service, an Object Management Group standard for
publish/subscribe middleware for distributed systems.

Java RMI Java Remote Method Invocation performs the object-oriented equivalent of
remote procedure calls (RPC)

Native Format Data Native Format Data is Data consisting only of its in-memory representation for a
particular Platform.

Operating System An Operating System is software that manages resources and provides common
services for computer programs.

Platform The Platform represents a subset11 of the components of a Computer comprising
any number of the following: Processor, Operating System, and Data Storage.

RPC Remote procedure call is an inter-process communication technique in
networked computing

XML Extensible Markup Language (XML) is syntax for encoding documents.

7 http://en.wikipedia.org/wiki/Floating_point_arithmetic#IEEE_754:_floating_point_in_modern_computers
8 http://en.wikipedia.org/wiki/Minifloat
9 http://en.wikipedia.org/wiki/Endianness
10 http://en.wikipedia.org/wiki/Bitmap
11 It is recognized that a computer has other components such as a monitor, a mouse, keyboard, etc., but only
the components listed below are relevant to this invention.

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://en.wikipedia.org/wiki/Java_remote_method_invocation
https://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Floating_point_arithmetic#IEEE_754:_floating_point_in_modern_computers
http://en.wikipedia.org/wiki/Minifloat
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Bitmap

AUTHORS

Page 13

Authors

This paper was authored by Ted Selig with input and edits from Stan Nissen. It summarizes some of work
and excerpts from a confidential paper titled “Ontology-Based Concurrent Information Synthesis (OCIS)”,
July 9, 2014 co-authored by Mike Ackroyd and Ted Selig. Revision July 27, 2025

Mike Ackroyd
Engineering Fellow

 Ted Selig
Director & COO

Company Information

FishEye, Software, Inc.
One Mill and Main, Suite 200, Maynard, MA 01754, USA
800.513.0881

http://www.FishEyeSoftware.com/Pelagic

July 2025

http://www.fisheyesoftware.com/Pelagic

	An Ecosystem Driving Real-Time Embedded System Lifecycle Costs and Risks
	The Real-Time Embedded System Ecosystem

	Vital Elements of Data Access
	Long-Term Characteristics of Real-Time Systems
	Four Approaches to Exposing Real-Time Embedded Data
	Natural Tendencies in Real-Time System Development

	Approaches to Real-Time Embedded Data
	Conventional Approach – Binary Data Recording
	Conventional Approach – Text Data Recording
	Conventional Approach – Network Recording
	Emerging Approach – MetaData Injection Data Recording

	Avoiding Pitfalls to a Risky and Costly Lifecycle
	Terms
	Authors
	Company Information

